Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in Arabidopsis thaliana.

Identifieur interne : 000332 ( Main/Exploration ); précédent : 000331; suivant : 000333

PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in Arabidopsis thaliana.

Auteurs : Tezz Quon [Australie] ; Edwin R. Lampugnani [Australie] ; David R. Smyth [Australie]

Source :

RBID : pubmed:28228771

Abstract

The activity of genes controlling organ development may be associated with the redox state of subregions within the meristem. Glutaredoxins react to the level of oxidative potential and can reduce cysteine dithiols, in some cases to activate specific transcription factors. In Arabidopsis, loss of function of the glutaredoxin ROXY1 or the trihelix transcription factor PETAL LOSS (PTL) each results in reduced numbers of petals. Here, genetic studies have revealed that loss of petals in ptl mutant plants depends on ROXY1 function. The two genes also act together to restrain stamen-identifying C function from entering the outer whorls. On the other hand, they suppress growth between sepals and in sepal margins, with ROXY1 action partially redundant to that of PTL. Genetic interactions with aux1 mutations indicate that auxin activity is reduced in the petal whorl of roxy1 mutants as in ptl mutants. However, it is apparently increased in the sepal whorl of triple mutants associated with the ectopic outgrowth of sepal margins, and of finger-like extensions of inter-sepal zones that in 20% of cases are topped with bunches of ectopic sepals. These interactions may be indirect, although PTL and ROXY1 proteins can interact directly when co-expressed in a transient assay. Changes of conserved cysteines within PTL to similar amino acids that cannot be oxidized did not block its function. It may be in some cases that under reducing conditions ROXY1 binds PTL and activates it by reducing specific conserved cysteines, thus resulting in growth suppression.

DOI: 10.3389/fpls.2017.00152
PubMed: 28228771
PubMed Central: PMC5296375


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in
<i>Arabidopsis thaliana</i>
.</title>
<author>
<name sortKey="Quon, Tezz" sort="Quon, Tezz" uniqKey="Quon T" first="Tezz" last="Quon">Tezz Quon</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton VIC</wicri:regionArea>
<wicri:noRegion>Clayton VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lampugnani, Edwin R" sort="Lampugnani, Edwin R" uniqKey="Lampugnani E" first="Edwin R" last="Lampugnani">Edwin R. Lampugnani</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton VIC</wicri:regionArea>
<wicri:noRegion>Clayton VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smyth, David R" sort="Smyth, David R" uniqKey="Smyth D" first="David R" last="Smyth">David R. Smyth</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton VIC</wicri:regionArea>
<wicri:noRegion>Clayton VIC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28228771</idno>
<idno type="pmid">28228771</idno>
<idno type="doi">10.3389/fpls.2017.00152</idno>
<idno type="pmc">PMC5296375</idno>
<idno type="wicri:Area/Main/Corpus">000369</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000369</idno>
<idno type="wicri:Area/Main/Curation">000369</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000369</idno>
<idno type="wicri:Area/Main/Exploration">000369</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in
<i>Arabidopsis thaliana</i>
.</title>
<author>
<name sortKey="Quon, Tezz" sort="Quon, Tezz" uniqKey="Quon T" first="Tezz" last="Quon">Tezz Quon</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton VIC</wicri:regionArea>
<wicri:noRegion>Clayton VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lampugnani, Edwin R" sort="Lampugnani, Edwin R" uniqKey="Lampugnani E" first="Edwin R" last="Lampugnani">Edwin R. Lampugnani</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton VIC</wicri:regionArea>
<wicri:noRegion>Clayton VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smyth, David R" sort="Smyth, David R" uniqKey="Smyth D" first="David R" last="Smyth">David R. Smyth</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, Monash University, Clayton VIC</wicri:regionArea>
<wicri:noRegion>Clayton VIC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The activity of genes controlling organ development may be associated with the redox state of subregions within the meristem. Glutaredoxins react to the level of oxidative potential and can reduce cysteine dithiols, in some cases to activate specific transcription factors. In Arabidopsis, loss of function of the glutaredoxin ROXY1 or the trihelix transcription factor PETAL LOSS (PTL) each results in reduced numbers of petals. Here, genetic studies have revealed that loss of petals in
<i>ptl</i>
mutant plants depends on ROXY1 function. The two genes also act together to restrain stamen-identifying C function from entering the outer whorls. On the other hand, they suppress growth between sepals and in sepal margins, with ROXY1 action partially redundant to that of PTL. Genetic interactions with
<i>aux1</i>
mutations indicate that auxin activity is reduced in the petal whorl of
<i>roxy1</i>
mutants as in
<i>ptl</i>
mutants. However, it is apparently increased in the sepal whorl of triple mutants associated with the ectopic outgrowth of sepal margins, and of finger-like extensions of inter-sepal zones that in 20% of cases are topped with bunches of ectopic sepals. These interactions may be indirect, although PTL and ROXY1 proteins can interact directly when co-expressed in a transient assay. Changes of conserved cysteines within PTL to similar amino acids that cannot be oxidized did not block its function. It may be in some cases that under reducing conditions ROXY1 binds PTL and activates it by reducing specific conserved cysteines, thus resulting in growth suppression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28228771</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in
<i>Arabidopsis thaliana</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>152</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.00152</ELocationID>
<Abstract>
<AbstractText>The activity of genes controlling organ development may be associated with the redox state of subregions within the meristem. Glutaredoxins react to the level of oxidative potential and can reduce cysteine dithiols, in some cases to activate specific transcription factors. In Arabidopsis, loss of function of the glutaredoxin ROXY1 or the trihelix transcription factor PETAL LOSS (PTL) each results in reduced numbers of petals. Here, genetic studies have revealed that loss of petals in
<i>ptl</i>
mutant plants depends on ROXY1 function. The two genes also act together to restrain stamen-identifying C function from entering the outer whorls. On the other hand, they suppress growth between sepals and in sepal margins, with ROXY1 action partially redundant to that of PTL. Genetic interactions with
<i>aux1</i>
mutations indicate that auxin activity is reduced in the petal whorl of
<i>roxy1</i>
mutants as in
<i>ptl</i>
mutants. However, it is apparently increased in the sepal whorl of triple mutants associated with the ectopic outgrowth of sepal margins, and of finger-like extensions of inter-sepal zones that in 20% of cases are topped with bunches of ectopic sepals. These interactions may be indirect, although PTL and ROXY1 proteins can interact directly when co-expressed in a transient assay. Changes of conserved cysteines within PTL to similar amino acids that cannot be oxidized did not block its function. It may be in some cases that under reducing conditions ROXY1 binds PTL and activates it by reducing specific conserved cysteines, thus resulting in growth suppression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Quon</LastName>
<ForeName>Tezz</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lampugnani</LastName>
<ForeName>Edwin R</ForeName>
<Initials>ER</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smyth</LastName>
<ForeName>David R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Monash University, Clayton VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AUX1</Keyword>
<Keyword MajorTopicYN="N">PETAL LOSS</Keyword>
<Keyword MajorTopicYN="N">ROXY1</Keyword>
<Keyword MajorTopicYN="N">flower development</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">petal</Keyword>
<Keyword MajorTopicYN="N">sepal</Keyword>
<Keyword MajorTopicYN="N">trihelix</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28228771</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.00152</ArticleId>
<ArticleId IdType="pmc">PMC5296375</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1993 Dec;12(12):4625-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8223472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 09;6:1052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Sep 15;446(3):333-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2012 Jun;139(12):2161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22573623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1996 Apr;122(4):1261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8620853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Apr 29;11(4):e0153810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27128442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(9):2475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25697797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Aug 16;273(5277):948-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8688077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Sep;71(5):724-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22507233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Feb;5(2):118-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3069-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2009 May;136(10):1605-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 10;287(33):27510-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):104-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21960138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):477-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):491-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(3):369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 20;426(6964):255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14628043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Aug;2(8):755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25781542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 26;8:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Mar 17;100(6):635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Jan 4;379(6560):66-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8538741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 20;337(6092):345-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Feb;22(2):376-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1999 Dec;126(24):5635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10572040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Sep 24;261(5129):1723-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17794879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2009 May;136(10):1613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1850(8):1497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Jan;131(2):425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Feb;29:121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1850(8):1479-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25676896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Mar;17(3):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22236699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15237103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(16):4035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Nov 1;467(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23686421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Apr;130(7):1429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 Jan 1;140(1):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Feb 1;13(3):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Jul 31;1:265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Feb;17:116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24507503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2010 Nov 1;78(14):3033-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20717979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1356-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24182193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jun;9(6):841-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9212461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2016 Jun;32(6):372-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27129984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Quon, Tezz" sort="Quon, Tezz" uniqKey="Quon T" first="Tezz" last="Quon">Tezz Quon</name>
</noRegion>
<name sortKey="Lampugnani, Edwin R" sort="Lampugnani, Edwin R" uniqKey="Lampugnani E" first="Edwin R" last="Lampugnani">Edwin R. Lampugnani</name>
<name sortKey="Smyth, David R" sort="Smyth, David R" uniqKey="Smyth D" first="David R" last="Smyth">David R. Smyth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000332 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000332 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28228771
   |texte=   PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28228771" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020